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Abstract
Reconstructing weighted networks from partial information is necessary in many
important circumstances, e.g. for a correct estimation of systemic risk. It has been
shown that, in order to achieve an accurate reconstruction, it is crucial to reliably
replicate the empirical degree sequence, which is however unknown in many realistic
situations. More recently, it has been found that the knowledge of the degree
sequence can be replaced by the knowledge of the strength sequence, which is
typically accessible, complemented by that of the total number of links, thus
considerably relaxing the observational requirements. Here we further relax these
requirements and devise a procedure valid when even the the total number of links is
unavailable. We assume that, apart from the heterogeneity induced by the degree
sequence itself, the network is homogeneous, so that its (global) link density can be
estimated by sampling subsets of nodes with representative density. We show that the
best way of sampling nodes is the random selection scheme, any other procedure
being biased towards unrealistically large, or small, link densities. We then introduce
our core technique for reconstructing both the topology and the link weights of the
unknown network in detail. When tested on real economic and financial data sets, our
method achieves a remarkable accuracy and is very robust with respect to the sampled
subsets, thus representing a reliable practical tool whenever the available topological
information is restricted to small portions of nodes.

PACS numbers: 89.75.Hc; 89.65.Gh; 02.50.Tt

Introduction
Reconstructing a weighted, directed network means providing an algorithm to estimate
the presence and the weight of all links in the network, making optimal use of the avail-
able information (Wells 2004; Upper 2011; Mastromatteo et al. 2012; Baral and Fique
2012; Drehmann and Tarashev 2013; Hałaj and Kok 2013; Anand et al. 2014; Montagna
and Lux 2014; Peltonen et al. 2015; Cimini et al. 2015b). Since several networks are in
general compatible with the known information, the output of such a procedure cannot
identify a unique network but rather an ensemble of possible ones. This leads to a (large)
set of candidate networks to be sampled with a certain probability, where the latter has
to be specified in such a way that the resulting ensemble average is as close as possible to
the empirical, unknown network. Maximum-entropy is a powerful method to construct
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probability distributions that realise a certain set of constraints on average. Treating the
available pieces of information as empirical constraints in the maximum-entropy pro-
cedure ensures that the statistical inference carried out via the resulting distribution is
maximally unbiased.
In many situations, e.g. for economic, interbank or other financial networks, the

strength sequence (i.e. the list of strengths of all nodes) is known while there is little
or no information available about the topology (i.e. the binary structure) of the net-
work. Exploiting the strength sequence as the only constraint of the maximum entropy
procedure leads to an unrealistic ensemble where the likely networks are (almost) com-
pletely connected (Mastrandrea et al. 2014). This occurs because, when replicating the
empirical strengths in absence of topological information, the method tends to dis-
tribute non-zero link weights as evenly as possible (i.e. between all pairs of nodes).
When such unrealistically dense networks are used as proxies to measure, e.g. the
level of systemic risk in a financial network, the resulting estimates are completely
unreliable. By contrast, it has been shown that, if the degree sequence is known in
addition to the strength sequence, the network reconstruction procedure improves
tremendously and achieves a remarkable accuracy, as a result of a much more faith-
ful replication of the topology (Mastrandrea et al. 2014; Cimini et al. 2015a). Notice
that, if the link weights are specified by the matrix W, whose entry wij ≥ 0 repre-
sents the weight of the directed link from node i to node j, the topology is specified by
the binary adjacency matrix A whose entry aij = 1 if wij is strictly positive and zero
otherwise.
Although complete information on the degree sequence is rarely available, this kind

of information can be retrieved from the strength sequence, provided that the latter is
complemented with some kind of topological information: in (Musmeci et al. 2013) this
information consists of the degree sequence of only a subset I of nodes, {ki}i∈I , while in
(Cimini et al. 2015b) the information used is the total number of links, L, of the network.
In this paper we face the problem of reconstructing weighted, directed networks,

for which the only information available is represented by the set of out-strengths
souti = ∑

j( �=i) wij and in-strengths sini = ∑
j( �=i) wji (i.e. the total rows and columns

sums of the adjacency matrix) as well as the link density of a subset I of nodes, i.e.
cI = LI

nI (nI−1) , with LI = ∑
i∈I

∑
j( �=i)∈I aij being the observed number of internal

links to the subset I. By doing so, we do not require information which is either too
detailed (as the degree sequence of even a small subset of nodes) or simply unacces-
sible (as the total number of links). However, the information encoded into the link
density of the chosen subset must be representative of the global one, in order to accu-
rately reconstruct a given network: for this reason, we also propose a recipe about how
properly sampling the nodes set of our network. As we will show, the random-nodes
sampling scheme provides the best way to draw representative subsets out of the whole
nodes set.
Concerning the reconstruction of the weighted structure, we will employ the degree-

corrected gravity model (Cimini et al. 2015b) with a correction term ensuring that the
strengths are reproduced even in absence of self-loops, i.e. of diagonal terms indicating
self-interactions. As we will show, such a correction becomes more and more important
as the strength of the considered node is increased, whence the need to properly account
for it.
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The rest of the paper is organized as follows. In “Methods” section we illustrate the two
steps characterizing our reconstruction method and provide measures to test the effec-
tiveness of the algorithm; in “Results” section we apply our method to two real networks,
an economic one and a financial one, and in “Conclusions” section we discuss the results.

Methods
Inferring the topological structure

In order to reconstruct the topological structure of a network W, whenever the nodes
strengths {souti }Ni=1 and {sini }Ni=1 and the total number of links L are known, one can follow
the algorithm proposed in (Cimini et al. 2015b), which prescribes to solve the equation

L = 〈L〉 (1)

with L = ∑
i
∑

j( �=i) aij, 〈L〉 = ∑
i
∑

j( �=i) pij and pij = (zsouti sinj )/(1 + zsouti sinj ), in order
to estimate the unknown parameter z and quantify the probability pij that a directed link
from i to j exists. However, a global (yet very simple) piece of information as L may be
not always available. In these cases, an algorithm resorting upon local information has to
be employed. In this paper we propose an algorithm to infer the unknown parameter z
whenever the information of only a subset I of nodes is accessible. Notice that a possi-
ble solution to this problem has already been provided in (Musmeci et al. 2013), where
the supposedly known piece of information is represented by the degree sequence of the
nodes in I, i.e. {ki}i∈I , an hypothesis leading to the equation

∑

i∈I

(
kouti + kini

) =
∑

i∈I

(〈kouti 〉 + 〈kini 〉) (2)

(with 〈kouti 〉 = ∑
j( �=i)∈V pij and 〈kini 〉 = ∑

j( �=i)∈V pji and V indicating the whole nodes
set). However, the knowledge of the number of neighbors of even a small subset of nodes
may be unavailable as well. For this reason, here we make use of a simpler, more easily
accessible, information and suppose to know only the link density within the subset I. Our
recipe thus reads

cI = 〈cI〉 (3)

where cI = LI/[ nI(nI −1)], nI = |I| is the number of nodes constituting the subset I, LI =
∑

i∈I
∑

j( �=i)∈I aij is the observed number of links within it and 〈LI〉 = ∑
i∈I

∑
j( �=i)∈I pij is

the expected value of LI .
Remarkably, Eq. (3) can be easily extended to infer the structure of a different subset

(say I ′), provided that the link density of the latter could be guessed from the known value
cI . As an example, let us assume the existence of a linear proportionality between the two
values cI′ and cI : in this case, the equation to be solved would be

cI = f 〈cI′ 〉. (4)

More explicitly, such a condition translates into the equation

cI = f
nI′(nI′ − 1)

∑

i∈I′

∑

j( �=i)∈I′

zI′souti sinj
1 + zI′souti sinj

(5)

which shows that the observed quantity tuning the parameter zI′ is cI ·nI′(nI′ − 1), i.e. the
link density of the known subset, corrected by a volume term.
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The value f = 1 corresponds to the assumption that the network is homogeneous. This
is equivalent to requiring that any two different subsets have exactly the same link density
and that, in turn, any subset provides a representative value of the global network density.
As we will show in what follows, a random sampling of the set of nodes indeed ensures
that this assumption is verified with high accuracy, for the networks considered here.

Inferring the weighted structure

Beside reconstructing a network topological features, the approach proposed in (Cimini
et al. 2015b) satisfactorily reproduces also its weighted structure. This approach is based
on the degree-corrected gravity model prescription, which reads

wij =
⎧
⎨

⎩

0 with probability 1 − pij,
souti sinj
Wpij with probability pij

(6)

leading to the expectations 〈wij〉 = souti sinj /W and ensuring that souti = 〈souti 〉 = ∑
j wij, ∀ i

and sini = 〈sini 〉 = ∑
j wji, ∀ i (i.e. that the in-strength and out-strength sequences are, on

average, reproduced) as long as all entries are summed over.
However, in many real-world networks self-loops are either absent or explicitly

excluded: this implies that either the diagonal terms of the adjacency matrix are equal to
zero or that our sums should run over j �= i. This causes the expectations coming from the
degree-corrected gravity model to need an extra-term to restore the correct value. More
explicitly,

〈souti 〉 =
∑

j( �=i)
〈wij〉 = souti (W − sini )

W
= souti − souti sini

W
, (7)

〈sini 〉 =
∑

j( �=i)
〈wji〉 = sini (W − souti )

W
= sini − souti sini

W
(8)

and the missing term to be added up to our expectations is precisely the diagonal term,
i.e. 〈wii〉.
Here we provide a solution to the problem above, by redistributing the diagonal term

〈wii〉 across theN−1 entries of the ith row and theN−1 entries of the ith column. In order
to implement it, a procedure inspired to the iterative proportional fitting (IPF) algorithm
(Bishop et al. 2007) can be devised. More specifically, redistributing the diagonal terms
across the corresponding rows and columns amounts to redistribute the strengths of the
following matrix on the entries equal to 1. Notice that we need to explicitly distinguish
the strengths along rows and columns, since the generic weight wij needs a correction
affecting both i and j.

0 1 1 1 . . .
sout1 sin1
W

1 0 1 1 . . .
sout2 sin2
W

1 1 0 1 . . .
sout3 sin3
W

1 1 1 0 . . .
sout4 sin4
W

...
...

...
...

. . .
...

sout1 sin1
W

sout2 sin2
W

sout3 sin3
W

sout4 sin4
W . . .

(9)
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In order to achieve the aforementioned redistribution, one can compute the iterations
of the IPF algorithm

⎧
⎪⎪⎨

⎪⎪⎩

w(n)
ij = souti sini

W

(
w(n−1)
ij

∑
k( �=i) w

(n−1)
ik

)

w(n+1)
ij = soutj sinj

W

(
w(n)
ij

∑
k( �=j) w

(n)

kj

) (10)

upon setting the matrix defined by w(0)
ij = 1, ∀ i �= j as the initial configuration. As a

consequence, we need to correct our probabilistic recipe as

wij =
⎧
⎨

⎩

0 with probability 1 − pij,(
souti sinj
W + w(∞)

ij

)
1
pij with probability pij.

(11)

For all practical purposes, a small number of iterations is often enough to achieve a
satisfactory degree of accuracy. Here we explicitly report the analytical functional form of
the first three IPF algorithm iterations only:

w(1)
ij = souti sini

W

[
1

N − 1

]

;

w(2)
ij = souti sini

W

[
soutj sinj

∑
l( �=j) soutl sinl

]

; (12)

w(3)
ij = souti sini

W

[
soutj sinj

∑
l( �=j) soutl sinl

]
⎡

⎢
⎣

1
∑

k( �=i)
soutk sink∑

m( �=k) soutm sinm

⎤

⎥
⎦ .

A pseudo-code summarizing the two main steps of our algorithm (i.e. Eqs. (3) and (11))
is provided in Appendix 1.

Testing our reconstruction algorithm

An algorithm aiming at reconstructing the topological structure of a network is an exam-
ple of a binary classificator which tries to infer whether each link is present or not. In order
to test the performance of our reconstruction method we, thus, consider four indicators:
the number of true positives, true negatives, false positives and false negatives. In net-
work terms, the expectation value of such indices reads 〈TP〉 = ∑

i
∑

j( �=i) aijpij, 〈TN〉 =
∑

i
∑

j( �=i)(1−aij)(1−pij), 〈FP〉 = ∑
i
∑

j( �=i)(1−aij)pij and 〈FN〉 = ∑
i
∑

j( �=i) aij(1−pij).
However, the information provided by these indicators is often condensed into four alter-
native indices. The first one is called sensitivity (or true positive rate), 〈TPR〉 = 〈TP〉

L , and
quantifies the percentage of 1s that are correctly recovered by our method. The second
index is the specificity (or true negative rate), 〈SPC〉 = 〈TN〉

N(N−1)−L , and quantifies the per-
centage of 0s that are correctly recovered by our method. The third index is the precision
(or positive predicted value), 〈PPV 〉 = 〈TP〉

〈L〉 , andmeasures the performance of our method
in correctly placing the 1s with respect to the total number of predicted 1s. The fourth
index is the accuracy, 〈ACC〉 = 〈TP〉+〈TN〉

N(N−1) , and quantifies the overall performance of our
method in correctly placing both the 1s and the 0s.
To test the effectiveness of the weighted reconstruction, instead, we use the cosine

similarity measure which estimates the distance between the observed weights {wij}Ni,j=1
and the conditional expected weights under our model {〈wij|aij = 1〉}Ni,j=1 by treating
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the corresponding matrices as vectors of real numbers and measuring their overlap. In
formulas,

θ = W · 〈W〉
||W|| ||〈W〉|| (13)

with θ = −1 indicating maximum dissimilarity, θ = 0 indicating absence of correlations
and θ = 1 indicating perfect overlap.

Results
World TradeWeb

The first network we have analyzed is the World Trade Web (WTW), i.e. the net-
work whose nodes are the world countries and whose links represent the trade volumes
between them: in other words, wij quantifies the volume of export from i to j. We remand
the reader to (Gleditsch 2002) for more details on the dataset. For the sake of illus-
tration, we show detailed results for the snapshot of the WTW in year 2000. We have
however analyzed other temporal snapshots as well and found comparable results (see
Appendix 2).
Table 1 sums up the results of our analysis when the nodes subset I is chosen at ran-

dom. We see that the performance of our algorithm is not affected by the cardinality of I
upon which the estimation of z is carried on, providing remarkably good results for all the
chosen values. In particular, our method is overall very accurate, being able to correctly
recover the 80% of 1s and the 73% of 0s, a result to be compared with the performance of
a perfect classifier, for which 〈TPR〉 = 〈SPC〉 = 1, and with that of a random classifier, for
which 〈TPR〉 = 1 − 〈SPC〉 = c (c being the link density of the whole network). The high
accuracy of our reconstruction method is also witnessed by the low rate of false positives
of our algorithm, due to the accurate estimation of the actual link density. As discussed in
(Squartini et al. 2016), overestimating the link density would have increased the expected
TPR (a method predicting a complete network is characterized by 〈TPR〉 = 1), at the price
of increasing the rate of false positives as well, thus decreasing the predictive power of the
method itself.
Our method performs well also in reproducing the weighted structure of the WTW:

upon adding the correction term up to the third iteration of the IPF algorithm, the largest

expected in-strength (reading 〈sini, corr〉 = ∑
j( �=i)

(
soutj sini
W + w(3)

ji

)

, ∀ i) accounts for the 95%

of the observed value. On the other hand, the non-corrected value 〈sini 〉 = ∑
j( �=i)

(
soutj sini
W

)

accounts for the 82% only. Better results are obtained for the out-strength sequence: the
corrected value for the node characterized by the maximum out-strength amounts at the
99% of the corresponding observed value (the non-corrected value accounts for the 88%).
Overall, we obtain a value θWTW 
 0.712 for all the considered cardinalities nI , indi-

cating a satisfactorily high level of similarity between our weights prediction and their
observed values.

e-MID interbank network

The second network we have tested our method upon is the electronic Market for Inter-
bank Deposits (e-MID), i.e. the network whose nodes are banks and whose generic link
i → j represents the loan granted from i to j. We remand the reader to (Iori et al. 2006)
for more details on the dataset.
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Table 1 summarizes the results of our analysis on e-MID in the year 1999 only (again,
similar results hold for the other years in our data set - see Appendix). As for the WTW,
the performance of our algorithm is not affected by nI providing again very good results
for the whole range of values of the subsets cardinality. In particular, our method is again
very accurate, being able to correctly recover the 
 64% of 1s and the 
 86% of 0s. Even if
the predictive power of our method is lower than for the WTW case, the accuracy values
are comparable, amounting at 
 80%.
Our method performs also very well in reproducing the e-MID weighted structure:

the correction term coming from the IPF algorithm and calculated for the maximum

〈souti, corr〉 = ∑
j( �=i)

(
souti sinj
W + w(3)

ij

)

, ∀ i accounts for the 99% of the observed value. On the

other hand, the usual value 〈souti 〉 = ∑
j( �=i)

(
souti sinj
W

)

accounts for the 88% only. A com-

parable result is obtained for the in-strength sequence: the corrected value for the node
characterized by the maximum in-strength still amounts at the 99% of the corresponding
observed value (the non-corrected value accounts for the 96%).
The value θe-MID 
 0.82 indicates that, on average, a very high level of similarity

between observed and predicted weights is again obtained, confirming the degree-
corrected gravity model as a good predictor of the links weights.

Random-nodes sampling scheme

The sampling-based reconstruction algorithm we have proposed in the present paper
rests upon the homogeneity assumption, according to which any subset of nodes picked
at random provides a representative value of the density of the whole network. Table 2
collects the estimations of the link density, averaged over all sampled subsets of a given
cardinality: remarkably, the obtained values are accurate even for low cardinalities. In
order to assess the magnitude of fluctuations, we have also explicitly computed the empir-
ical probability distributions of the link density estimates, obtained by random sampling
our nodes subsets. These distributions are shown in Fig. 1 (right panels). Naturally, the
smaller the cardinality of the considered nodes subsets, the more spaced the values of the
observable link density and the less smooth the corresponding probability distribution.
These findings suggests that our homogeneity assumption is indeed verified, provided
that nodes are sampled according to the random selection scheme (Genois et al. 2015).
As a comparison, we have also sampled nodes sequentially, i.e. by, first, ordering nodes

according to their total strength stoti = souti + sini and, then, considering bunches of n sub-
sequent nodes (again, for each value of n). For each subset of nodes we have calculated
the corresponding internal link density and plotted it versus the total internal strength
of nodes, i.e. stotI = ∑

i∈I
(
souti + sini

)
. As shown in Fig. 1 (left panels), such a procedure

provides insights on the structural organization of both WTW and e-MID: nodes char-
acterized by large values of the total strength tend to form densely-connected groups
whereas nodes characterized by small values of the total strength tend to form loosely-
connected groups. Such an evidence confirms the presence of a core-periphery structure,
with nodes having a smaller total strength establishing connections with nodes having
a large total strength which, in turn, tend to connect preferentially with each other (as
a sort of “rich-club”) (Fagiolo et al. 2010; De Masi et al. 2006). Our analysis suggests
that a sampling-based reconstruction procedure must rest upon a “balanced” sampling
of the nodes, biased neither towards the “core” portion of nodes (which would lead to
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Fig. 1 Left panels: scatter plots of the link density cI versus the internal total strength stotI of the subset I.
Nodes characterized by large values of the total strength tend to form densely-connected groups, while
nodes characterized by small values of the total strength tend, on the contrary, to form loosely-connected
groups. Right panels: empirical probability distributions of the link density cI , when nodes belonging to I are
chosen randomly. Each distribution is peaked around the density value of the whole network. Top panels
refer to the WTW, bottom panels to e-MID

severely overestimate the overall network density), nor towards the “periphery” portion
of nodes (which would lead to severely underestimate the overall network density). Inter-
estingly, in a recent paper comparing several network sampling techniques was found that
the least biased sampling scheme for estimating a given network density is precisely the
random-nodes one (Blagus et al. 2016).

Conclusions
The present contribution proposes a recipe to reconstruct a network from a very lim-
ited amount of information. In particular, we address the problem of inferring the binary
and the weighted structure of a given network from the knowledge of the nodes strengths
and the link density of only a subset of nodes. As we have shown in the paper, the best
sampling scheme is the random-nodes selection scheme which ensures that an accurate
estimation of the whole network density can indeed be achieved. On the contrary, select-
ing nodes on the basis of more informative structural properties (as the degree, or the
strength) could bias the estimation of the connectance towards unrealistically too large,
or too small, values. The role played by the available piece of topological information is
fundamental not only to achieve an accurate reconstruction of the purely binary structure
but also of the weighted structure, as evident upon inspecting Table 1.
The aforementioned results have been obtained by estimating the link density of the

whole network upon considering only nodes subsets: in other words, we have verified that
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different random subsets (even with different cardinality) are characterized by very sim-
ilar densities, in turn implying that the whole network density can be estimated (with a
high degree of accuracy) by considering a subset randomly drawn from the whole set of
nodes. However, the proposed algorithm can be also used to reconstruct networks with
a modular structure, upon tuning the link densities of the different modules via Eq. (4):
examples are provided by interbank networks structured into jurisdictions, the latter
playing the role of the subsets to be reconstructed.

Appendix 1
A pseudo-code summarizing the main steps of the reconstruction algorithm presented in
the paper follows.

Algorithm 1: Network reconstruction via density sampling
Input: in- and out-strengths {sini }Ni=1, {souti }Ni=1 and link density of a subset I,

cI = LI
nI (nI−1) .

begin
solve the equation cI = 〈cI〉 in order to determine z:

cI = 1
nI(nI − 1)

∑

i∈I

∑

j( �=i)∈I

zsouti sinj
1 + zsouti sinj

;

define pij = zsouti sinj
1+zsouti sinj

;

form = 1 . . .M do
for i < j do

calculate the correction to the gravity-like estimation

w(3)
ij = souti sini

W

[
soutj sinj

∑
l( �=j) soutl sinl

]
⎡

⎢
⎣

1
∑

k( �=i)
soutk sink∑

m( �=k) soutm sinm

⎤

⎥
⎦ ;

connect i and j with a weight drawn from the following Bernoulli
distribution

wij =
⎧
⎨

⎩

0, 1 − pij,(
souti sinj
W + w(3)

ij

)
1
pij , pij.

end
end
verify the goodness of the achieved reconstruction by calculating the ensemble
average of indicators like TPR, SPC, PPV, ACC and θ ;

end

Output: ensemble ofM reconstructed directed, weighted networks.
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Appendix 2
Additional years have been analysed for both the WTW and e-MID (see Tables 3 and 4).

Table 3 Statistical indicators used to evaluate the performance of our sampled-based reconstruction
method, for different cardinalities n of the known subset I. Results are shown together with the 95%
confidence intervals (not shown whenever their difference affects the significant digits beyond the
third one)

WTW n = 5 (CI 95%) n = 10 (CI 95%) n = 20 (CI 95%) n = 50 (CI 95%)

1950 - Link density (true: 0.402) 0.401 [0.375;0.426] 0.402 [0.387;0.416] 0.401 [0.393;0.409] 0.400 [0.396;0.403]

1950 - Accuracy 0.736 [0.731;0.741] 0.747 [0.746;0.749] 0.751 0.752

1950 - Cosine similarity 0.460 [0.458;0.462] 0.463 0.463 0.463

1960 - Link density (true: 0.383) 0.329 [0.305;0.352] 0.343 [0.330;0.357] 0.346 [0.338;0.355] 0.348 [0.344;0.353]

1960 - Accuracy 0.737 [0.734;0.741] 0.746 0.749 [0.748;0.750] 0.751

1960 - Cosine similarity 0.586 0.591 0.591 0.591

1970 - Link density (true: 0.460) 0.464 [0.436;0.492] 0.478 [0.462;0.496] 0.461 [0.451;0.471] 0.464 [0.458;0.469]

1970 - Accuracy 0.695 [0.691;0.699] 0.704 [0.702;0.706] 0.709 0.709

1970 - Cosine similarity 0.669 0.669 0.669 0.669

1980 - Link density (true: 0.468) 0.484 [0.458;0.510] 0.470 [0.455;0.485] 0.471 [0.461;0.481] 0.463 [0.458;0.469]

1980 - Accuracy 0.719 [0.715;0.723] 0.731 [0.730;0.733] 0.734 [0.733;0.735] 0.736

1980 - Cosine similarity 0.732 0.732 0.732 0.732

1990 - Link density (true: 0.505) 0.495 [0.467;0.522] 0.516 [0.500;0.532] 0.506 [0.497;0.515] 0.507 [0.503;0.512]

1990 - Accuracy 0.731 [0.726;0.736] 0.743 [0.741;0.745] 0.748 0.749

1990 - Cosine similarity 0.751 0.751 0.751 0.751

The considered cardinalities n = 5, 10, 20, 50 correspond to percentages ranging from 
 2% to 
 25% of the total number of
nodes. The true link densities calculated on the entire networks for the various periods are shown in brackets for reference

Table 4 Statistical indicators used to evaluate the performance of our sampled-based reconstruction
method, for different cardinalities n of the known subset I. Results are shown together with the 95%
confidence intervals (not shown whenever their difference affects the significant digits beyond the
third one)

e-MID n = 5 (CI 95%) n = 10 (CI 95%) n = 20 (CI 95%) n = 50 (CI 95%)

2000 - Link density (true: 0.278) 0.293 [0.269;0.317] 0.279 [0.263;0.295] 0.273 [0.264;0.281] 0.280 [0.273;0.283]

2000 - Accuracy 0.763 [0.759;0.768] 0.772 [0.769;0.775] 0.778 [0.777;0.779] 0.778 [0.777;0.779]

2000 - Cosine similarity 0.573 [0.566;0.580] 0.578 [0.576;0.582] 0.582 0.582

2001 - Link density (true: 0.263) 0.279 [0.256;0.303] 0.264 [0.249;0.278] 0.257 [0.246;0.267] 0.266 [0.261;0.272]

2001 - Accuracy 0.763 [0.757;0.770] 0.774 [0.772;0.776] 0.777 [0.775;0.779] 0.778 [0.777;0.779]

2001 - Cosine similarity 0.560 [0.554;0.566] 0.566 [0.563;0.569] 0.569 0.570

2002 - Link density (true: 0.233) 0.253 [0.230;0.276] 0.237 [0.221;0.252] 0.235 [0.225;0.246] 0.233 [0.228;0.239]

2002 - Accuracy 0.759 [0.752;0.766] 0.767 [0.763;0.771] 0.770 [0.767;0.772] 0.772 [0.770;0.773]

2002 - Cosine similarity 0.684 [0.675;0.694] 0.670 [0.682;0.697] 0.699 [0.697;0.701] 0.701 [0.700;0.702]

2003 - Link density (true: 0.214) 0.248 [0.223;0.273] 0.225 [0.208;0.243] 0.217 [0.205;0.228] 0.213 [0.208;0.219]

2003 - Accuracy 0.746 [0.737;0.756] 0.758 [0.752;0.763] 0.763 [0.759;0.766] 0.766 [0.764;0.767]

2003 - Cosine similarity 0.461 [0.453;0.470] 0.462 [0.454;0.470] 0.472 [0.469;0.475] 0.476 [0.475;0.477]

2004 - Link density (true: 0.190) 0.210 [0.185;0.235] 0.183 [0.168;0.199] 0.194 [0.182;0.205] 0.187 [0.181;0.192]

2004 - Accuracy 0.772 [0.762;0.783] 0.785 [0.780;0.790] 0.784 [0.780;0.788] 0.788 [0.786;0.790]

2004 - Cosine similarity 0.481 [0.470;0.492] 0.482 [0.474;0.491] 0.497 [0.493;0.502] 0.503 [0.501;0.504]

2005 - Link density (true: 0.201) 0.232 [0.205;0.258] 0.210 [0.190;0.222] 0.210 [0.200;0.221] 0.208 [0.203;0.214]

2005 - Accuracy 0.751 [0.740;0.762] 0.767 [0.760;0.773] 0.767 [0.763;0.771] 0.769 [0.767;0.771]

2005 - Cosine similarity 0.461 [0.448;0.474] 0.476 [0.470;0.483] 0.486 [0.483;0.490] 0.491 [0.490;0.492]

The considered cardinalities n = 5, 10, 20, 50, 100 correspond to percentages ranging from 
 2% to 
 25% of the total number
of nodes. The true link densities calculated on the entire networks for the various periods are shown in brackets for reference
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